Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 42 results ...

Afroz, R (2020) Developing a low-carbon architecture pedagogy in Bangladesh. Buildings and Cities, 1(01), 637–49.

Andersen, C E, Kanafani, K, Zimmermann, R K, Rasmussen, F N and Birgisdóttir, H (2020) Comparison of GHG emissions from circular and conventional building components. Buildings and Cities, 1(01), 379–92.

Anderson, J and Moncaster, A (2020) Embodied carbon of concrete in buildings, Part 1: analysis of published EPD. Buildings and Cities, 1(01), 198–217.

Axon, S and Morrissey, J (2020) Just energy transitions? Social inequities, vulnerabilities and unintended consequences. Buildings and Cities, 1(01), 393–411.

Baborska-Narozny, M, Szulgowska-Zgrzywa, M, Mokrzecka, M, Chmielewska, A, Fidorow-Kaprawy, N, Stefanowicz, E, Piechurski, K and Laska, M (2020) Climate justice: air quality and transitions from solid fuel heating. Buildings and Cities, 1(01), 120–40.

Balouktsi, M (2020) Carbon metrics for cities: production and consumption implications for policies. Buildings and Cities, 1(01), 233–59.

Bordass, B (2020) Metrics for energy performance in operation: the fallacy of single indicators. Buildings and Cities, 1(01), 260–76.

Clarke, L, Sahin-Dikmen, M and Winch, C (2020) Transforming vocational education and training for nearly zero-energy building. Buildings and Cities, 1(01), 650–61.

Crawley, J, McKenna, E, Gori, V and Oreszczyn, T (2020) Creating Domestic Building Thermal Performance Ratings Using Smart Meter Data. Buildings and Cities, 1(01), 1–13.

Fawcett, T and Topouzi, M (2020) Residential retrofit in the climate emergency: the role of metrics. Buildings and Cities, 1(01), 475–90.

Francart, N, Höjer, M, Mjörnell, K, Orahim, A S, von Platten, J and Malmqvist, T (2020) Sharing indoor space: stakeholders’ perspectives and energy metrics. Buildings and Cities, 1(01), 70–85.

Frischknecht, R, Alig, M, Nathani, C, Hellmüller, P and Stolz, P (2020) Carbon footprints and reduction requirements: the Swiss real estate sector. Buildings and Cities, 1(01), 325–36.

Grant, E J (2020) Mainstreaming environmental education for architects: the need for basic literacies. Buildings and Cities, 1(01), 538–49.

Green, E, Lannon, S, Patterson, J, Variale, F and Iorwerth, H (2020) Decarbonising the Welsh housing stock: from practice to policy. Buildings and Cities, 1(01), 277–92.

Green, S D and Sergeeva, N (2020) The contested privileging of zero carbon: plausibility, persuasiveness and professionalism. Buildings and Cities, 1(01), 491–503.

Habert, G, Röck, M, Steininger, K, Lupísek, A, Birgisdottir, H, Desing, H, Chandrakumar, C, Pittau, F, Passer, A, Rovers, R, Slavkovic, K, Hollberg, A, Hoxha, E, Jusselme, T, Nault, E, Allacker, K and Lützkendorf, T (2020) Carbon budgets for buildings: harmonising temporal, spatial and sectoral dimensions. Buildings and Cities, 1(01), 429–52.

Hamstead, Z, Coseo, P, AlKhaled, S, Boamah, E F, Hondula, D M, Middel, A and Rajkovich, N (2020) Thermally resilient communities: creating a socio-technical collaborative response to extreme temperatures. Buildings and Cities, 1(01), 218–32.

Hoxha, E, Passer, A, Saade, M R M, Trigaux, D, Shuttleworth, A, Pittau, F, Allacker, K and Habert, G (2020) Biogenic carbon in buildings: a critical overview of LCA methods. Buildings and Cities, 1(01), 504–24.

Killip, G (2020) A reform agenda for UK construction education and practice. Buildings and Cities, 1(01), 525–37.

Klinsky, S and Mavrogianni, A (2020) Climate justice and the built environment. Buildings and Cities, 1(01), 412–28.

Kuittinen, M and Häkkinen, T (2020) Reduced carbon footprints of buildings: new Finnish standards and assessments. Buildings and Cities, 1(01), 182–97.

Lützkendorf, T (2020) The role of carbon metrics in supporting built-environment professionals. Buildings and Cities, 1(01), 676–86.

Lützkendorf, T and Frischknecht, R (2020) (Net-) zero-emission buildings: a typology of terms and definitions. Buildings and Cities, 1(01), 662–75.

Mayer, M (2020) Material recovery certification for construction workers. Buildings and Cities, 1(01), 550–64.

Parkin, A, Herrera, M and Coley, D A (2020) Net-zero buildings: when carbon and energy metrics diverge. Buildings and Cities, 1(01), 86–99.

Passe, U (2020) A design workflow for integrating performance into architectural education. Buildings and Cities, 1(01), 565–78.

Passe, U, Dorneich, M, Krejci, C, Koupaei, D M, Marmur, B, Shenk, L, Stonewall, J, Thompson, J and Zhou, Y (2020) An urban modelling framework for climate resilience in low-resource neighbourhoods. Buildings and Cities, 1(01), 453–74.

Patrick, M, Grewal, G, Chelagat, W and Shannon, G (2020) Planetary health justice: feminist approaches to building in rural Kenya. Buildings and Cities, 1(01), 308–24.

Roca-Puigròs, M, Billy, R G, Gerber, A, Wäger, P and Müller, D B (2020) Pathways toward a carbon-neutral Swiss residential building stock. Buildings and Cities, 1(01), 579–93.

Salter, J, Lu, Y, Kim, J C, Kellett, R, Girling, C, Inomata, F and Krahn, A (2020) Iterative ‘what-if’ neighborhood simulation: energy and emissions impacts. Buildings and Cities, 1(01), 293–307.

Schünemann, C, Olfert, A, Schiela, D, Gruhler, K and Ortlepp, R (2020) Mitigation and adaptation in multifamily housing: overheating and climate justice. Buildings and Cities, 1(01), 36–55.

Schiller, G, Gruhler, K and Xie, X (2020) Assessing the efficiency of indoor and outdoor access-related infrastructure. Buildings and Cities, 1(01), 56–69.

Schmidt, M, Crawford, R H and Warren-Myers, G (2020) Integrating life-cycle GHG emissions into a building’s economic evaluation. Buildings and Cities, 1(01), 361–78.

Schoenefeldt, H (2020) Delivery of occupant satisfaction in the House of Commons, 1950–2019. Buildings and Cities, 1(01), 141–63.

Simpson, K, Janda, K B and Owen, A (2020) Preparing ‘middle actors’ to deliver zero-carbon building transitions. Buildings and Cities, 1(01), 610–24.

Srivastava, M (2020) Cooperative learning in design studios: a pedagogy for net-positive performance. Buildings and Cities, 1(01), 594–609.

Steadman, P, Evans, S, Liddiard, R, Godoy-Shimizu, D, Ruyssevelt, P and Humphrey, D (2020) Building stock energy modelling in the UK: the 3DStock method and the London Building Stock Model. Buildings and Cities, 1(01), 100–19.

Steininger, K W, Meyer, L, Nabernegg, S and Kirchengast, G (2020) Sectoral carbon budgets as an evaluation framework for the built environment. Buildings and Cities, 1(01), 337–60.

  • Type: Journal Article
  • Keywords: buildings; carbon budgets; climate policy; construction sector; Paris Agreement; policy stringency; sectoral carbon; retrofit;
  • ISBN/ISSN: 2632-6655
  • URL: https://doi.org/10.5334/bc.32
  • Abstract:
    The objective of the United Nations Paris Agreement to limit global warming to well below 2°C, with efforts to reach 1.5°C, requires a strict limitation of future global greenhouse gas (GHG) emissions based on a global carbon budget. Applying equity considerations allows for the derivation of national carbon budgets. A key question then arises: How can these national budgets be allocated at the sectoral level? A new method is proposed to allocate carbon budgets at the sectoral level. First, a cost-based approach is used to indicate a necessary carbon budget for each sector. However, the aggregation of these initial sectoral carbon budgets usually exceeds the available national carbon budget. This indicates the relevance of working with sectoral carbon budgets and the required reductions to remain within the overall national carbon budget. This conceptual approach aims at, first, a cost-effective sectoral effort-sharing; second, the design of corresponding strict carbon emission reduction pathways (at both the sector and aggregate levels); and, third, the redesign of investment policies for capital stock improvements to remain within the aggregate carbon budget (involving trade-offs in investment induced emissions for operational emission reduction). Policy relevance Limiting global warming according to the United Nations Paris Agreement requires a strict limitation of future global GHG emissions. A new method is presented to allocate national carbon budgets to the national sectoral level. The carbon budget concept has the potential to provide a transparent and informative tool for the analysis, policy design and monitoring of GHG emission pathways, particularly for the long time horizons involved. The area of activity involving the construction and use of buildings, termed embodied and operational GHGs, requires a particularly large fraction of the national carbon budget. Compared with other sectors, these activities have the highest potential for keeping countries within their national carbon budgets as far as enabling capital stock improvements are concerned that over-proportionally reduce use emissions. The approach can link carbon budgets at the municipal, city and regional levels. It could lend itself to an initially voluntary initiative, later compulsory policy framework for substantial and cost-effective emission reductions.

Stevenson, F and Kwok, A (2020) Mainstreaming zero carbon: lessons for built-environment education and training. Buildings and Cities, 1(01), 687–96.

Tanguy, A, Breton, C, Blanchet, P and Amor, B (2020) Characterising the development trends driving sustainable neighborhoods. Buildings and Cities, 1(01), 164–81.

Waldman, B, Huang, M and Simonen, K (2020) Embodied carbon in construction materials: a framework for quantifying data quality in EPDs. Buildings and Cities, 1(01), 625–36.

Willand, N, Moore, T, Horne, R and Robertson, S (2020) Retrofit Poverty: Socioeconomic Spatial Disparities in Retrofit Subsidies Uptake. Buildings and Cities, 1(01), 14–35.